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Abstract

The Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) have provided optical
detection of lightning from low-Earth orbit for over ten years. Due to the orbit limitations, OTD and LIS
cannot provide continuous coverage of severe storm development. The objectives of the
Geostationary Lightning Mapper (GLM) are to provide continuous, fuil-disk lightning measurements for
storm warning and nowcasting; early warning of tornadic activity; and accumulate a long-term
database to rack decadal changes.

The fundamental LM is to detect of both and intra-
cloud lightning flashes with a high detection efficiency and a low faise alam rate, 70% and 5%
respectively at end of ife. OTD and LIS have demonstrated the efficacy of the optical detection
approach, which discriminates the opiical pulses from the high-background daytime environment of
sun-it clouds. In order to accurately assess GLM performance, sophisticated modeling is required.
Because lightning is a transient event, the GLM instrument is quite different from the typical remote
sensing environmental instrument. In addition to radiometric modeling, which provides the usual
signal-to-noise ratio, analysis of the "receiver operaling characteristics” (ROC) s required to determine
the probability of detection (Py) or probabilty of a false alarm. These performance parameters are
customarily used in certain miltary sensors.

Our approach to the analysis is twofold: a performance model has been generated that provides
moderate fidelity and allows rapid trade-off of sensor characteristics, and another tool provides high-
fidelity simulation of particular special cases.

For both methods, a detailed understanding of the lightning optical pulse characteristics is required.
Statistical models of the amplitude, temporal and spatial distribution of the optical emissions have.
been generated from the observations described in the lterature. The particular detection algorithm
has also been integrated into the detection analysis. Noise sources, including scene shot noise and
sensor noise are included in the moderate fidelity model

In the high-fidelity simulation, spacecraf iter, edge effects and the radiation environment from cosmic
ray and solar particle radiation (based on Ball Aerospace detailed models) have also been included. A
Monte Carlo approach s used to incorporate radiation hits and lightning events. Finally, the high-
fidelity simulation includes the effects of the varied and high radiance background by the inclusion of
actual scenes from MODIS and other data.

Background
Why Use Statistics?

*There is wide variation in lightning phenomena

«Itis not possible to accurately determine sensor
performance without modeling that takes account of
lightning phenomena with statistical hypothesis testing
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Why a Model and a Simulation?

« Model is to derive sensitivities and performance trends
— Uses simplifying assumptions about scene
— Can use fast analytic formulas for P, performance
« Simulation predicts real world End-to-end performance in
the presence of
— Structured scene, spacecraft induced LOS motion,
radiation

Model and simulation account for all

sensor parameters that affect the
number of signal and noise electrons
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Informaton

Model and Sim Share Core
Statistical Description

Description of clouds must
— Capture the statistical
properties that matter for
detection
— Simple enough to fit within
computing resources
Assumptions on cloud
surfaces
— Cloud radiating surfaces are
planar, circular, disk radiators
— Cloud planes are parallel to
the Earth’s surface

Disk Normal Visclars.

Cireulor disks
represanting

Truncated Gamma Probability Density, p(R),
Matches Published Lightning Cloud Radius Data

Model Uses Analytic Formula for
Signal Electron Probability Density
to Determine Pp

« The optimal detection threshold is computed from the
background probability density

« P, is the area under the background plus lightning density to
the right of the threshold
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to Produce Clutter Leakage
ge with (vedsid Farsadances, fame 357 «Inter frame motion causes
= s “clutter leakage”, where

structure from the background
leaks into the background
subtracted image. (See above)

« Clutter leakage is caused by
sudden changes in the
background scene from pixels
close to high contrast edges
whose positions are modulated
by inter-frame LOS motion

«When the sudden changes in
pixel signals exceed the
threshold, a false event occurs

- Example of clutter leakage in
simulated GLM image of
Florida coast

+The red circles are exceedances
—some due to lightning and
some due to clutter leakage

«Our algorithms successfully
suppress clutter leakage by

+MODIS imagery with its proper spatial
oversampling, adequate image size, similar spectral
bands, and a wide latitude range provided the
background scene for this simulated GLM image.

lighiing using higher thresholds for high
modeled variance pixels
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PD

Cross-validated Model and
Simulation

In order to use the simulation to extend model predictions of
performance trends to real world scenes we have to be sure
model and sim predictions of P, agree for the simplified
scenes assumed by the model

«In this example the
analytic model and
simulation show their
agreement on the PD
trend for aperture
diam
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Results

Interaction Between Lightning Parameters and

Sensor Parameters — Pj, vs. Frame Time Trend
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Conclusions

» The wide variation in lightning
phenomena parameters requires a fully
statistical treatment for accurate Py
predictions

* The large parameter space is best

explored with an analytic model and
examined in detail with a simulation

» Simulations offer a realistic assessment
of expected sensor-algorithm system
performance
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