
Using regression models to enhance signals from a scattered radiation field:
Reducing stray light contamination in the limb profiles of the Ozone Mapper Profiler Suite (OMPS)

As the technology of remote sensing using radiometric observations advances and we are confronted 
with weaker and weaker signals, stray light corruption will become an increasingly important challenge. 
Stray light is particularly damaging for imagers that sample a large dynamic range such as the OMPS 
limb profiler. In that case, even a very small fraction of photons straying from the high-intensity region of 
the image can dominate measurements in the low intensity region. For the OMPS limb profiler, stray 
light represents a small linear perturbation to the overall observed energy, even though it dominates 
observations for some wavelengths and viewing angles. By exploiting this characteristic, we have found 
that both iterative techniques based on a Taylor expansion of the inverse stray light operator and linear 
regression models can effectively reduce stray light contamination from OMPS measurements provided 
there is sufficient sampling of the radiant energy field and a sufficiently good characterization of the 
instrument.

Synopsis
Regression models can benefit operational retrievals because the bulk of their cost is incurred during 
offline training. However, they can perform no better than the data used to train them and work best for 
systems whose dynamical operators are largely linear. Regression models can be problematic in an 
operational setting if the instrument undergoes changes (e.g., pixel failure in the detector); with the 
instrument in orbit, retraining can be difficult. Thus, it is important to both characterize stray light with 
instrument tests before it is launched and to find stray light removal techniques that are flexible and can 
be altered to accommodate instrument changes. We examine three variations of an ozone retrieval 
algorithm that utilize regression models to characterize internal scattering and other instrument effects. 
These three methods are compared in terms of their general sensitivity to noise, sensitivity to model error, 
and their ability to handle complications such as pixel saturation and pixel failure. 

Our results suggest that regression models can be used to reduce stray light contamination in limb 
profiles from OMPS. Furthermore, the most effective use of a regression model is to simulate the 
instrument in the forward model of the optimal estimation (Rodgers 2000) procedure used to retrieve 
ozone. That is, rather than using radiance for the data vector and a radiative transfer model as the 
forward model in Rodgers’ procedure (as is commonly done), the data vector is comprised of raw 
observations and the forward model includes a full instrument model – in the form of a regression. With 
this method, a reasonable amount of pixel saturation and pixel failure can be tolerated without additional 
correction or re-tuning of the regression model. Errors in the instrument model used to train the regression 
models can be problematic.

Since precise measurement of the PSFs is difficult, we recommend that 
hardware solutions be exhaustively explored before resorting to a software 
solution – however, given any hardware solution, our method should be able
to reduce stray light contamination further.
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Typical point spread function

Preliminaries The Stray Light Problem:
What makes it  a difficult problem
and why it is soluble

Impacts on instrument error

Photon counts from a CCD cross section: Perfect instrument
(thick black line), and impacts of attenuation (thick blue line) and 
internal scattering (stray light; thick red line).

Globally, stray light is a small error, 
but it can be locally dominant

Impact on ozone retrievals

Since stray light is a small global perturbation, we attempt 
to remove it via a Taylor expansion of the inverse operator

Uncorrected  stray light leads to 
20 - 40% retrieval errors

Iterative method based on Taylor expansion is very 
effective after only 2 iterations

Remaining problems

PSFs are expensive to apply and even more so to invert
– Answer: Use a regression model

Instrument inversion requires an accurate instrument model

Regression models are efficient – the expense is incurred during 
offline training - but difficult to test and retrain during 
operation (instrument is in orbit)

Questions:
– Will regression models withstand rigorous testing?
– How will they handle loss of information due to pixel failure 

and pixel saturation?
– How do instrument model errors affect the results?

Testing procedure

Compare methods in terms of ozone retrieval errors
Run an ensemble of retrievals
Each uses the same ozone a priori
Each has noise added as the only additional source of error

Gaussian white noise clipped at 2 σ
Uniform amplitude 1% of signal

Our solution to stray light contamination

We investigate the viability of three different methods 
of using regression models to remove stray light

Regression errors and noise sensitivity: Method 0

• Without noise, adding coefficients makes the regression better
• But, regressions degrade beyond 20 coefficients with noisy input data
• Method 1 results are nearly identical
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The three methods
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Q: Regression model: Measurements to radiance

Q: Regression model
removes stray light

F: RT model + Regression model (Radiance to measurements)

F: RT model + Regression model

F: RT model

Each method divides the retrieval 
process between Q and F in a 
different way

Regression error: Method 2

Errors of similar amplitude to Methods 0, 1 but concentrated in the upper 
atmosphere

Noise sensitivity of method 2 is not relevant
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Results and conclusions

Due to noise-amplification immunity of method 2, it 
performs well in the face of several different types of 
instrument error

Noise (1% of amplitude at each pixel)

Pixel  saturation (10% of pixels)

Pixel failure (20% of pixels)

Instrument error:  Attenuation

Instrument error:  Internal scattering (1 σ errors)

Point spread function includes:

A sharp peak that reduces the 
resolution 

and broad low amplitude wings 
that allows high intensity regions 
of the image to corrupt low 
intensity regions (stray light)
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Elements of the Attenuation matrix A are increased uniformly by 0.02

Columns of the internal scattering matrix D (PSFs) are all set equal to the  
average PSF (elements of each row are set to the row-average)

In this case, the standard deviation of the error is roughly equivalent to the 
standard deviation of measured PSFs

Conceptual Framework

Our understanding is limited to a simplified version of this process
Which is represented by discrete matrix operators

( ) ( )χ χoM = J R
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D represents scattering within the 
instrument
A represents attenuation within the 
instrument
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Retrievals are broken down into two components
A data processing step

And the retrieval step (using the notation of Rodgers 2000)

x is the state vector
y is the data vector
F is the forward model
K is the tangent linear model for F
G is a generalized inverse for K

Satellite-based observations have two important components
The radiative transfer operator R (χ ) obtains radiance from the viewing state vector χ
The instrument operator J obtains measurements M from radiance

Philosophical framework

Use a ‘perfect model’ framework
– Simulate ‘measurements’

• Numerical radiative transfer model
• Numerical instrument model

– Allows controlled experiments (‘truth’ is known)
– Allows detailed error analysis

• Source of error can be perfectly determined
– Allows good statistics 

• Amount of data only constrained by computer time
– Relation to actual measurements is uncertain
– Logic is circular

• Only known sources of error are accounted for
• Can lead to over-optimistic results

– Relies on reliable simulators and our ability to validate them

Utilize a detailed (if not accurate) instrument model that has features of the 
actual instrument

– More efficient to run than a highly accurate simulator
– Can more easily distinguish sources of error
– Can relate simulations to reality if simulation errors are small
– Even the best simulator has inaccuracies

Simulated observations

Instrument simulator includes:
Quantum efficiency
Optical through put
Stray light
Stray light filters
Noise

6 images on 1 CCD (3 slits, 2 different 
gains)

Stray light allows in inter-image 
interference


