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Abstract
Two examples of neural-network-based atmospheric retrieval algorithms being developed for the ATMS and CrIS NPP/NPOESS sensors are presented. First, we consider the retrieval of atmospheric temperature and moisture 
profiles in the presence of clouds from hyperspectral radiance measurements in the thermal infrared. The effects of clouds are estimated and corrected using stochastic cloud clearing (SCC). A projected principal components 
(PPC) transform is then used to reduce the dimensionality of and optimally extract geophysical information from the spectral radiance data, and a multilayer feed-forward neural network (NN) is subsequently used to estimate 
the desired geophysical profiles. This algorithm offers the numerical stability and efficiency of statistical methods without sacrificing the accuracy of physical, model-based methods. We will present results based on proxy data 
from the AIRS and AMSU sensors. Second, we consider the retrieval of precipitation rate from passive microwave radiance measurements at frequencies near the oxygen and water vapor resonances at 50–60 GHz and 
183.31 GHz, respectively. In this case, the models relating the precipitation rate to the radiance intensities measured by the sensor are extremely complicated and difficult to validate. The use of neural networks to empirically 
learn the statistical relationship between rain rate and spectral intensity obviates the need for complex and, often, inaccurate models in the retrieval algorithm.
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Summary
• Two neural-network-based algorithms for retrieving precipitation and atmospheric profiles from CrIMSS

have been presented
• The algorithm accuracies meet or exceed those of heritage algorithms at a substantially reduced 

computational burden

Retrieval of Rain Rate Using ATMS

MM5 Rain Rate

MM5 data: 8 Dec 2002, 1600 to 1800 
UTC
NOAA-16 AMSU-A/B data: 8 Dec 
2002, around 1626 UTC

ATMS, 183±7 GHzAMSU-B, 183±7 GHz

Simulated ATMS 183±7-GHz data show reasonable agreement with AMSU-B. The 
morphology difference between AMSU observations and MM5 predicted radiances is due 
to the inaccuracy of the NCEP analyses used to initialize the MM5 model.

ATMS, 50.3 GHzAMSU-A, 50.3 GHz

Simulated ATMS 50.3-GHz data with finer resolution and sampling show finer features
than AMSU-A.

ATMS Precipitation Retrieval Algorithm
1.1° ATMS vs. MM5
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100

80

70

50

30

20

0

90

60

40

10

0 20 40 60 70 80 90503010

RMS Error: 1.9 mm/h

MM5 Rain Rate (mm/h)

AT
M

S 
R

ai
n 

R
at

e 
(m

m
/h

)

5.2° ATMS vs. MM5
60

50

40

30

20

10

0
0 10 20 30 40 50 60

RMS Error: 1.2 mm/h

MM5 Rain Rate (mm/h)

AT
M

S 
R

ai
n 

R
at

e 
(m

m
/h

)

• 22 channels and the satellite zenith angle  
iiiwere input to neural network
• Typhoon data shown in the brightness 
iiitemperature images were used
• Training, validation, and testing sets each 
iiihad 1521 examples
• Results shown for 1.1°, 2.2°, and 5.2°
iiiresolution precipitation rates

• A system for simulating ATMS data using MM5/TBSCAT has been developed and shows reasonable 
agreement with observed AMSU data

• A preliminary ATMS precipitation retrieval algorithm has been developed for a single typhoon and shows 
good agreement with MM5

• MM5 Numerical Weather Prediction (NWP) model provides temperature profile, 
water vapor profile, hydrometeor profile, and other cloud microphysical properties

• ATMS observations were simulated using radiative transfer calculations based on 
TBSCAT [Rosenkranz, 2002]

• Improved hydrometeor modeling due to Surussavadee & Staelin (2006)
• Accurate matching of brightness temperatures on MM5 grid to ATMS resolution 

and geolocation using “satellite geometry” toolbox for MATLAB
– Computing angular offset of surface locations from boresight
– Computing satellite zenith angles from scan angle
– Computing geolocation from scan angle

• Estimation of surface rain rate was performed using a single-layer neural network • Estimation of surface rain rate was performed using a single-layer neural network 
rain rate was performed using a single-layer neural network trained to MM5 output

• Based on statistics derived from a set of training data; in this 
iiicase, over 500,000 temperature and moisture profiles from 
iiithe ECMWF forecast were co-located with AIRS/AMSU 
iiiobservations
• Cloud-cleared radiances are estimated by the SCC algorithm
• Global operation: Land/Ocean, Day/Night, all latitudes
• Altitude-dependent quality control
• 100–1000 times faster than heritage algorithms
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Noise-Filtered Radiance Reconstruction Error

Temperature Profile Retrieval Error
Performance comparisons of the PC (where the components are 
derived from both noisy and noise-free radiances), NAPC, and PPC 
transforms for a hypothetical 1750-channel infrared (4 µm–15 µm) 
sounder. Two projected principal components transforms were 
considered, PPC(R) and PPC(T), which are, respectively, 1) 
maximum representation of noise-free radiance energy, and 2) 
maximum representation of temperature profile energy. The first plot 
shows the sum-squared error of the reduced-rank reconstruction of 
the noise-free spectral radiances. The second plot shows the 
temperature profile retrieval error (trace of the error covariance 
matrix) obtained using linear regression with r components.

The structure of the multilayer feed-forward neural network (specifically, the 
multilayer perceptron) is shown in (a), and the perceptron (or node) is shown in 
(b). A single hidden layer is used to retrieve temperature and two hidden layers 
are used to retrieve moisture. Typically,  25–50 nodes are used.
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(a) Neural Network Topology (b) Perceptron
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SCC + Linear regression (100% accepted)
SCC + NN (100% accepted)
SCC + NN (with quality control: 27% accepted)
AIRS L2 v4 (81% accepted)
AIRS L2 v4 (7% accepted)

Temperature profile retrieval performance for the SCC/NN 
algorithm is compared with SCC + linear regression as well 
as the AIRS Level 2 algorithm. Moisture retrieval 
performance shows similar trends.

The SCC/NN Algorithm
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