
We are working on an algorithm to reduce stray light contamination 
in ozone retrievals by the OMPS limb-profiles (LP).

Our most recent approach uses a regression representation of the 
instrument in the forward model of the optimal estimation  
procedure.

The method has the following benefits:
• There is no explicit inversion of the stray light operator and, so, the retrieval   
does not act upon amplified noise

• A regression model can be computationally efficient because:

• The bulk of the cost is incurred during off-line training

• The regression exploits large-scale patterns in the fields to reduce the 
dimension of the stray light operator

• Input to the regression model is output from an idealized radiative transfer 
(RT) model making the regression model (in principle) perfectly trainable.

Our most recent efforts focus on developing a training strategy for 
the regression model based on the subdivision of state space into 
regions over which the RT model is nearly linear.

For this method to be ultimately successful, we will need a reliable 
characterization of the instrument and a strategy for retraining the 
regression model to accommodate future changes in the instrument 
characterization

Stray light contamination results from internal scattering within the 
instrument that causes photons to strike the image plane at a 
different location than it would otherwise.

It is described via the stray light operator Θ

 

whose elements Θij 
represent the probability that a photon that would strike the image 
plane at location pj in the absence of stray light actually strikes the 
image plane at location pi .

Removing stray light amounts to applying the inverse operator Θ-1 

to the measurements m:

• This is analogous to performing a de-convolution, a process that is  
notoriously unstable and prone to noise amplification.

• The measurements are noisy

• Measurements typically do not describe the entire image plane and, thus,  
Θ-1m is an inaccurate representation of what the measurements would be 
without stray light
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To perform our investigation, we constructed an instrument simulator 
for the OMPS-LP that includes:
Quantum efficiency, Optical through put, Stray light, Stray light filters, 
High and low gain images, Two different integrating times, and Noise

Relevant to this study: 
• Evidence for stray light is found in between images where the signal 
should be zero.
• Multiple images on the same CCD allow cross-image contamination 
by stray light.
• Less than 20% of the data is utilized – making it difficult to remove 
stray light via the inverse stray light operator.
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For high intensity signals, stray light impact is imperceptible 
(red line hidden behind blue)

For low intensity signals, stray light dominates

The figure above shows measurements along cross sections  
through a high intensity region of the CCD (top panel) and a low 
intensity region. The black line represents a perfect instrument. The 
blue shows the impact of attenuating influences, and the red line 
represents the full instrument model. The difference between the 
red and blue lines quantifies the impact of stray light. While stray 
light dominates the signal for low intensity regions, overall it is small 
effect. Our work exploits the ‘smallness’ of stray light.
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This figure shows normalized ozone 
retrieval errors for a baseline 
calculation for which a small amount 
of instrument noise is the only source 
of error. Ensemble rms errors are 
small throughout: 1-5%.

If uncorrected, stray light causes large 
retrieval errors: 20-40%
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The impact of uncorrected stray light

2 iterations of the stray light removal

The success of the iteration method to invert the stray light 
operator was very encouraging, but it has two problems. 

It is expensive. It requires two applications of an expensive 
instrument model. 

It requires full knowledge of the measurements, which we will 
not have due to the sub-sampling strategy used to meet data 
rate constraints.

Linear regression can be efficient because the bulk of the 
expense is incurred during offline training. In addition,  
regression models are able to exploit large-scale patterns in 
the radiance and measurement fields, allowing the  
information in these fields to be stored with a small number of 
parameters. This latter property makes the regression 
efficient. It also allows us to remove the impact of nearly all 
sources of stray light despite severe sub-sampling of the  
image plane.

Placing the regression model into the forward model brings stray 
light removal under the umbrella of the optimal estimation routine. 
This regularizes stray light inversion as it does inversion of 
radiative transfer. 

In addition, input to the regression model is output from an  
idealized RT model. This has two important consequences:

1. Input to the regression model is noise free, so the regression 
model does not directly amplify noise.

2. It is, in principle, possible to know a priori the full range of 
output from the RT model and, thus, the regression model is 
perfectly trainable. The sub-sampling of measurements does not 
adversely affect our ability to remove stray light.

Normalized ozone retrieval error

This figure displays normalized retrieval errors for the case that 
regression training incorporates both ozone and temperature 
variability. There are systematic errors are no worse that the 
previous case with ozone variability only.

Ozone retrieval from the OMPS-LP is essentially a two step 
process. A data processing step (e.g., producing an SDR), with 
operator Q that produces a data vector y from measurements 
m

( )=y Q m

And the ozone retrieval that inverts the relationship

( )=y F x

using the optimal estimation procedure of Rodgers (2000), 
where x is the state vector to be retrieved (i.e., the vertical 
profile of ozone number density) and F is the forward model.

Within this simple view of the retrieval process, we have two 
choices for implementing stray light removal.

Method 1: We can include stray light removal in the data 
processing step. In this case, Q is a regression representation 
of the inverse instrument operator and F is a radiative transfer 
model. 

Method 2: We can include the effects of stray light in the 
forward model of the optimal estimation. In this case, Q is 
essentially the identity, and F combines radiative transfer with a 
regression representation of the instrument.

Optimal estimation inverts the relationship

( )=y F x

via the tangent linear model, or kernel, K
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For a state vector of dimension n and data vector of dimension 
m calculating, determining K requires enough runs of the  
forward model to determine n x m derivatives, which for large n 
and m can be expensive.

However, since a regression model is itself a tangent linear  
model, updating the radiative transfer kernel Krad to include the 
instrument kernel Kinst only requires multiplying Krad by a matrix 
of regression coefficients – which are pre-calculated..

For example, consider the radiance vector r
= radr K x

So,
=
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For the case of method 2: We use regression to calculate the 
measurement vector m from the radiance vector r.

0;  
′= +

′ ′= + + = +
0

0

m m m
m β Ar r r r

To determine the coefficients β

 

and A, we utilize a training set of 
measurement/radiance pairs m(t), r(t): t = 1,T and minimize the 
least squares error for each vector element mi in the set of  
equations
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This figure compares noise amplification by the two stray light removal  
techniques for different number of regression coefficients used.

Note that while we can improve the performance of method 2 by increasing 
the number of coefficients used in the regression model, improvements using 
method 1 are limited by the increased noise amplification that accompanies 
such an increase.

Method 2 also outperforms method 1 in experiments that simulate the impact 
of pixel failure, pixel saturation, errors in the instrument characterization, and 
errors in the assumed properties of the atmosphere. 

To fully train the regression model, the training data (sets of 
radiance output from the idealized RT model paired with the 
corresponding measurements) should span the input and  
output spaces of the instrument.  

One factor that makes our regression approach appealing is 
that the input space to the regression model is constrained by 
the output of an idealized RT calculation, which constrains the 
amount of training data required. 

To exploit that factor, we must know a priori what that restricted 
radiance space is in order to train the regression model. We do 
not have that information.

We do, however, know the constraints on the state space that 
is input to the RT model.

IF the RT model was linear, developing a training strategy (i.e., 
deciding on an appropriate set of training data) would be  
simple. 

We could construct radiance/measurement pairs from a set of 
basis state vectors that span the input space of the RT model.

But, the RT model is not linear …

To help us develop and test this strategy, we first consider a 
state space for which only ozone concentration and temperature 
vary. All other aspects of the atmospheric/viewing space are held 
fixed: solar angle, viewing angle, surface reflectivity, aerosol 
properties, …

We investigate the properties of the RT calculation over this  
state space – investigating the performance of a linearized 
calculation to determined the number of linear sub-spaces  
required to span the entire state space.

We construct basis temperature and ozone number density  
profiles for each sub-space and calculate training 
radiance/measurement data from those basis sets.

Our current basis vectors are calculated using sinusoidal  
perturbations to the state vector at the center of the linear sub- 
space.
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The first set is considered to be a necessary, but probably not 
sufficient test of the method. We use it because it is constructed 
with the same standard ozone and temperature profiles  
(Wellemeyer et al., JGR, 1997) used to test operational codes. 

( ) ( ) ( )( )
( ) ( ) ( )

1.0( ) ( 1) 1.0 (0,1)

1

10.0

A z A z fN
Z

O z O z A z

T z T z A z

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

= +

= +

De-correlation heights: 
Z = 5, 7.5, 10 km
Noise amplitude:            
f = 0.3

The second set is considered a more rigorous test and uses 
profiles with Markovian perturbations to the standard profiles.
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This figure displays normalized retrieval errors for the case that 
regression training only incorporates ozone variability. There 
are systematic errors (note the wavy pattern) that we hope to 
learn how to alleviate – but the overall performance is  
encouraging.

Conclusions

•

 

Stray light contamination is a small, linear  
perturbation (for the OMPS limb profiler)

•

 

Regression is an inexpensive way to handle 
small, linear perturbations

•

 

Incorporating the regression model into the 
forward model protects the retrieval from  
noise amplification

• Requires an accurate characterization of 
the instrument

• Requires a careful training strategy with 
many subtle issues to resolve
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“We constructed an instrument 
simulator to investigate stray light 

contamination in the OMPS-LP”

“This is all you really need to know” “The Problem is, stray photons don’t go 
where they’re supposed to”

“We first explored an iterative method 
based on the Taylor expansion of the 
inverse stray light operator to remove 
stray light from the measurements.”

“Stray light dominates the signal for 
low-intensity portions of the CCD, 
but is a small perturbation to the 

radiant energy overall”

“Just two iterations of 
this technique reduces 
retrieval errors to the 
level of noise”

“In our experiments, the method that places a  
regression representation of the instrument into 

the  forward model of the optimal estimation 
procedure performs best”

Regression training: “The regression is 
performed for each measurement vector 

element”

A side issue: “The fact that a regression model 
is a tangent linear model is the key to the our 
ability to place a regression representation of 

the instrument into the forward model”

“The efficiency of the regression model 
allows us to explore a variety of stray light 

removal methods”

“Our iteration method to invert the stray 
light operator has two principal problems.”

“We use linear regression to circumvent 
both problems.”

“In hindsight, the performance of this 
method should be of no surprise, placing a 

regression representation of the 
instrument into the forward model to 
remove stray light has a number of 

beneficial properties’’

“So, to complete our work: we need to 
develop a training for the regression model, 

develop a strategy for retraining to 
accommodate future instrument changes, 

and a reliable characterization of the 
instrument”

“The major obstacle for a training strategy 
to overcome is the non-linearity of radiative 

transfer”

“The strategy we are pursuing is to divide 
the state space into linear sub-spaces over 
which the RT calculation is approximately 

linear”

“To test our method, we constructed 2 
sets of verification data”

“We first tested the strategy with state 
vectors for which ozone number density is 

the only varying quantity.”

These results are encouraging, 
but this is a very simplified test

“Then we added temperature variability 
with similar success”
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